Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.18.23291566

Résumé

Background Surrogates of antiviral efficacy are needed for COVID-19. We investigated the relationship between the virological effect of treatment and clinical efficacy as measured by progression to severe disease in unvaccinated outpatients treated for mild to moderate COVID-19. Methods We searched PubMed, Scopus and medRxiv from inception to 27th September 2022, for randomised controlled trials (RCTs) which tested potential treatments for COVID-19 in non-hospitalized patients. We included studies that reported both clinical and virological outcomes. Clinical outcomes were the rate of disease progression (generally hospitalization or death within 28 days of commencing treatment) and virological outcomes were viral load (viral RNA copies in upper respiratory tract swabs) within the first 7 days of treatment. Studies were excluded if they did not report on the outcome of a primary randomised controlled trial, or if results were reported in a more complete form in another publication. Risk of Bias assessment was performed using the RoB 2.0 tool. We used generalised linear models with random effects to assess the association between outcomes and account for study heterogeneity. Findings We identified 1372 unique studies of which 14 (with a total of 9257 participants) met inclusion criteria. Larger virological treatment effects at both day 3 and day 5 were associated with decreased odds of progression to hospitalisation or death in unvaccinated ambulatory subjects. The odds ratio (OR) for each extra two-fold reduction in viral load in treated compared to control subjects was 0.54 on both days 3 and 5 post treatment (day 3 95% CI 0.38 to 0.74, day 5 95%CI 0.41 to 0.72). There was no relationship between the odds of hospitalisation or death and virological treatment effect at day 7 (OR 0.91, 95%CI 0.74 to 1.13). Interpretation Despite the aggregation of studies with differing designs, and evidence of risk of bias in some virological outcomes, this review provides evidence that treatment-induced acceleration of viral clearance within the first 5 days after treatment is a surrogate of clinical efficacy to prevent hospitalisation with COVID-19. This work supports the use of viral clearance as an early phase clinical trial endpoint of therapeutic efficacy. Funding The authors were supported by the Australian Government Department of Health, Medical Research Future Fund, National Health and Medical Research Council and the University of New South Wales.


Sujets)
COVID-19 , Mort
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.11.22.22282199

Résumé

Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies in preventing symptomatic SARS-CoV-2 infection. We use data on changes in the in vivo concentration of monoclonal antibodies, and the associated protection from COVID-19, over time to model the dose-response relationship of monoclonal antibodies for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a monoclonal antibody concentration of 939-fold of the in vitro IC50 (95% CI: 135 - 2073). This relationship provides a quantitative tool allowing prediction of the prophylactic efficacy and duration of protection for new monoclonal antibodies administered at different doses and against different SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either monoclonal antibody treatment or vaccination. We find no evidence for a difference between the 50% protective titer for monoclonal antibodies and vaccination, although vaccination is predicted to be capable of achieving a higher maximum level of protection.


Sujets)
COVID-19
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.09.22275942

Résumé

Background: Vaccine protection from COVID-19 has been shown to decline with time-since-vaccination and against SARS-CoV-2 variants. Protection against severe COVID-19 is higher than against symptomatic infection, and also appears relatively preserved over time and against variants. Although Protection protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres, however, this relationship has been is less well described for severe COVID-19. Protection against severe COVID-19 is higher than against symptomatic infection, and also appears relatively preserved over time and against variants. Here we analyse whether neutralising antibody titre remains predictive of protection against severe COVID-19 in the face of waning neutralising antibody levels and emerging variants. Methods: We extracted data from 15 studies reporting on protection against a range of SARS-CoV-2 clinical endpoints ("any infection", "symptomatic infection" and "severe COVID-19"). We then estimated the concurrent neutralising antibody titres using existing parameters on vaccine potency, neutralising antibody decay, and loss of recognition of variants and investigated the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. Findings: Predicted neutralising antibody titres are strongly correlated with vaccine effectiveness against symptomatic and severe COVID-19 (Spearman rho = .94 and 0.63 respectively, p


Sujets)
COVID-19 , Infections
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.05.22275943

Résumé

Several studies show neutralizing antibody levels are an important correlate of immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, a number of these studies appear to yield quite different estimates of the level of neutralizing antibodies required for protection. Here we show that after normalization of antibody titers current studies converge on a consistent relationship between antibody levels and protection from COVID-19.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21252641

Résumé

Both previous infection and vaccination have been shown to provide potent protection from COVID-19. However, there are concerns that waning immunity and viral variation may lead to a loss of protection over time. Predictive models of immune protection are urgently needed to identify immune correlates of protection to assist in the future deployment of vaccines. To address this, we modelled the relationship between in vitro neutralisation levels and observed protection from SARS-CoV-2 infection using data from seven current vaccines as well as convalescent cohorts. Here we show that neutralisation level is highly predictive of immune protection. The 50% protective neutralisation level was estimated to be approximately 20% of the average convalescent level (95% CI = 14-28%). The estimated neutralisation level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level (CI = 0.7-13%, p = 0.0004). Given the relationship between in vitro neutralization titer and protection, we then used this to investigate how waning immunity and antigenic variation might affect vaccine efficacy. We found that the decay of neutralising titre in vaccinated subjects over the first 3-4 months after vaccination was at least as rapid as the decay observed in convalescent subjects. Modelling the decay of neutralisation titre over the first 250 days after immunisation predicts a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralisation titres against some SARS-CoV-2 variants of concern are reduced compared to the vaccine strain and our model predicts the relationship between neutralisation and efficacy against viral variants. Our analyses provide an evidence-based prediction of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.


Sujets)
COVID-19
6.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

Résumé

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
7.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

Résumé

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Sujets)
Maladies virales , Lymphome B , COVID-19
SÉLECTION CITATIONS
Détails de la recherche